University of Arizona, Center for Toxicology Southwest Hazardous Waste Program
Search

Tabla de
Contenido

Descripción General
1. Introducción
2. Toxicologia Ambiental
3. Evaluación de Riesgos Ambientales
4. Restauración Ambiental
5. Prevención de la Contaminación
6. Anexo
7. Indice de Figuras y Tablas


Download Toxicologia Ambiental aqui

 

Sección previa
Página previa
Homepage
Capítulo índice
Próxima sección
Próxima página

TOXICOLOGIA AMBIENTAL

2.3.4.3 Bioactivación

Como mencionamos anteriormente, la bioactivación es el conjunto de reacciones metabólicas que incrementan la toxicidad de los xenobióticos, o sea que los metabolitos resultantes de la biotransformación de la substancia absorbida son más tóxicos que el compuesto original.

La mayoría de las bioactivaciones son producidas por las enzimas de la Fase I, aunque algunas de las enzimas de la Fase II también pueden bioactivar algunos xenobióticos. Este efecto lateral indeseable de la biotransformación ocurre cuando se producen especies químicas muy reactivas, normalmente compuestos electrofílicos con gran afinidad por los nucleófilos. El ADN, las proteínas y los lípidos son nucleófilos.

La mayoría de las reacciones en los que se generan productos de aducción de ADN y proteínas se deben a la interacción de estas macromoléculas con los productos de las reacciones de bioactivación. El acetoaminofén se N-hidroxila en el hígado, vía un Citocromo P-450. El producto de la hidroxilación reacciona con proteínas del hígado, produciendo hepatotoxicidad.

La aducción del ADN es un tema de estudio de gran importancia, ya que da por resultado la transformación de las células normales en cancerosas. El benzo-alfa-pireno es un cancerígeno que es bioactivado en el hígado, formando un epoxidiol altamente electrofílico que se liga al ADN.

Existen varios mecanismos por medio de los cuales una substancia puede incrementar la toxicidad de otra:

  • Inducción de Enzimas. Un xenobiótico puede inducir una enzima que bioactiva a otro xenobiótico. Por ejemplo el etanol induce la síntesis del Citocromo P-450 que bioactiva al tetracloruro de carbono. Esta interacción hace que el tetracloruro de carbono sea más tóxico cuando se administra junto con alcohol
  • Inhibición de enzimas. La inhibición también puede incrementar la bioactivación. Por ejemplo, una substancia que bloquee la síntesis de los Citocromos P-450 hará que el organismo se vuelva más susceptible a los tóxicos que son destoxificados por los P-450. Las substancias que inhiben la síntesis de Citocromo P-450 también pudieran servir de antídoto si la especie tóxica es producto de la bioactivación del xenobiótico por el Citocromo P-450

Las rutas de Bioactivación son las siguientes:

  1. El tejido blanco contiene las enzimas para bioactivar el xenobiótico y es el sitio activo para la especie tóxica. El ejemplo clásico de esta ruta es la bioactivación del tetracloruro de carbono vía la deshalogenación por el P-450 del hígado, produciendo el radical libre triclorometilo, el cual reacciona con proteínas y lípidos del hígado.
  2. Un tejido no blanco bioactiva al xenobiótico, el cual experimenta otra bioactivación en el tejido blanco. Ejemplo, el benceno es oxidado a fenol por los P-450 del hígado y este compuesto se transporta hasta la médula ósea donde se transforma en hidroquinol, un diol que causa daño en la médula ósea.
  3. Un tejido no-blanco bioactiva el xenobiótico, el cual tiene sus efectos en el tejido blanco. Ejemplo: el hexano se transforma en 2,5-hexanodiona por la acción del P-450 y la alcohol deshidrogenasa del hígado. Este metabolito produce ligaduras cruzadas en los neurofilamentos causando daño en nervios periféricos.

Figura 2.3.4.E.- Ejemplos de Reacciones de Bioactivación

En resumen:

  • La biotranformación Fase I son reacciones de oxidación catalizadas por un sistema complejo de enzimas que convierten los xenobióticos no polares en compuestos solubles en agua. La mayoría de los xenobióticos no serían substrato de las enzimas de la Fase II sin las transformaciones introducidas por las reacciones de la Fase I
  • A bajas concentraciones de oxígeno, los Citocromos P-450 pueden catalizar reducciones de los xenobióticos
  • Las reacciones de la Fase I pueden dar lugar a bioactivaciones
  • Las reacciones de la Fase II son adiciones de residuos polares en los grupos funcionales del xenobiótico, normalmente producidos en la Fase I, que dan productos mucho más solubles en agua que los compuestos absorbidos y los productos de la Fase I
  • Algunas reacciones de la Fase II producen compuestos menos solubles en agua
  • La capacidad de los tejidos para hacer transformaciones Fase II depende de la cantidad disponible de cofactores en las condiciones fisiológicas en las que se encuentra el organismo

Normalmente el organismo tiene las defensas adecuadas para manejar la agresión química para lo cual cuenta con lo siguiente:

  • las enzimas de las dos fases de la biotransformación
  • la presencia de antioxidantes que eliminan radicales libres y reducen especies tóxicas
  • las proteínas plasmáticas que ligan los tóxicos en el plasma sanguíneo impidiendo su difusión hacia los tejidos

La toxicidad ocurre cuando todas las defensas han sido vencidas. Por ejemplo el fenol, como vimos anteriormente, se destoxifica primero por sulfatación y después por glucuronidación. Cuando se agotan los dos cofactores para estas reacciones, el fenol se empieza a acumular y se produce su distribución hacia su sitio activo, la médula ósea, donde produce su respuesta tóxica.

Página previa


Southwest Hazardous Waste Program     Center for Toxicology     College of Pharmacy


Preguntas/
Comentario
TOXICOLOGIA AMBIENTAL
Evaluación de Riesgos y Restauración Ambiental
© 1996-2001, The University of Arizona

Web Master:  Mike Kopplin
Last update:  March 25, 2004